###Verlagshomepage austriainnovativ.at news### Personalia Forschung
© Foto: beigestellt
Thomas Gassler und BOKU-Professor Diethard Mattanovich vor einem Bioreaktorsystem zur Hefekultivierungen.
© Foto: beigestellt

Junge Forscher*innen

Thomas Gassler erforscht Hefe

Dem jungen Biotechnologen Thomas Gassler ist es gelungen, den Stoffwechselweg einer Hefeart „umzudrehen“. Das hört sich weniger spektakulär an, als es tatsächlich ist: Denn die neuartige Technologie hat das Zeug zum „Game Changer“ in der Futtermittel- und Plastikproduktion – und zwar sowohl aus ökonomischer als auch aus ökologischer Sicht.

von: Von Harald Sager

Um zu verstehen, worin die Forschungsleistung von Thomas Gassler sowie des Teams rund um Prof. Diethard Mattanovich von der BOKU Wien besteht, sollte man zunächst einmal zwei dafür relevante Grundbegriffe auseinanderhalten: autotroph und heterotroph. Ersteres bedeutet, dass ein Lebewesen sich von Kohlenstoff aus CO2 „ernährt“. Beispielsweise sind alle Pflanzen autotroph, wobei sie die Energie für diese Lebensweise aus Licht beziehen. Dabei wird das CO2 in die Biomasse der Pflanzen eingebaut, wodurch diese wachsen, blühen und gedeihen können. Im Gegensatz dazu ernähren sich heterotrophe Lebewesen wie etwa Tiere, eine Vielzahl von Bakterien oder wir Menschen aus anderen organischen Verbindungen. Anders gesagt, wer ein Schnitzel zu sich nimmt, ist heterotroph, wer hingegen sonnenbadet, kann zwar auch ein Mensch sein, ist aber in der Regel eine Pflanze und damit autotroph.

Ein wesentlicher Unterschied kommt noch hinzu: Autotrophe Lebewesen nutzen das CO2 für ihr Weiterleben, geben es aber nicht wieder zur Gänze ab. (Bäume beispielsweise sind große CO2-Speicher, denn sie binden dieses in ihrer Biomasse.) Heterotrophe hingegen tun das sehr wohl, man denke nur an den elementaren Vorgang des Atmens, bei dem wir Menschen und die Tierwelt bei der Einatmung Sauerstoff aufnehmen und – als Folge diverser Stoffwechselabläufe – mit der Ausatmung CO2 abgeben. Das ist nicht weiter schlimm und trägt jedenfalls nicht zum klimaschädigenden CO2-Ausstoß bei. Anders ist das bei vielen industriellen Prozessen, unter anderem bei der biotechnologischen Umwandlung von Zucker oder anderen organischen Substraten in höherwertige Produkte: Da sie auf heterotrophen Stoffwechselvorgängen beruhen, entstehen dabei eben nicht nur neue Produkte, sondern es wird im Zuge des Prozesses auch CO2 an die Umwelt abgegeben.

Kombinierte Auto- und Heterotrophie

Wie wäre es nun, die Vorzüge der Autotrophie mit jenen der Heterotrophie zu kombinieren? Das wäre eine Win-win-Situation, denn auf der einen Seite wäre CO2 nicht nur gebunden, sondern könnte auch sinnvoll verwertet werden; auf der anderen Seite wiederum könnten verschiedene organische Substrate miteinander verbunden werden, um dadurch neue und höherwertige Produkte entstehen zu lassen – aber eben ohne CO2-Ausstoß. Tatsächlich käme für die Industrie weltweit wohl nichts gerufener, als Prozesse zu entwickeln, mit deren Hilfe sich das lästige CO2 auf biotechnologischem Weg verwerten ließe. Nur, wie ließe sich eine solche Kombination von Vorteilen bewerkstellen? Beispielsweise dadurch, dass man einen heterotrophen Organismus auf autotroph umstellt. Ein Team unter der Leitung von Prof. Diethard Mattanovich von der BOKU Wien (Institut für Mikrobiologie und Mikrobielle Biotechnologie) hat genau das unternommen, und der maßgeblich daran beteiligte Thomas Gassler widmete dem Thema seine Dissertation. Damit sorgte er – siehe Infobox – für einige Furore in Form von Wissenschaftspreisen und konnte seine Publikation als Erstautor im renommierten Fachjournal Nature Biotechnology platzieren.

Die Hefeart Pichia pastoris 

Der Organismus, der zur Umprogrammierung ausgewählt wurde, ist die vielbeforschte industrielle Hefeart Pichia pastoris, die bei der Herstellung von Enzymen für die Nahrungsund Futtermittelindustrie sowie von Pharmazeutika verbreitet eingesetzt wird. Sie ist heterotroph in einem engeren Sinne, nämlich methylotroph, das heißt, sie verwendet Methanol als Kohlenstoff- und Energiequelle für ihr Wachstum. „Durch gentechnische Integration von acht artfremden – sogenannten heterologen – Genen aus Pflanzen, Bakterien und anderen Hefearten sowie Ausschaltung dreier eigener Gene gelang es uns erstmals, den zentralen Stoffwechselweg der Pichia pastoris von heterotroph auf autotroph, umzudrehen, sodass CO2 (statt Methanol) als Kohlenstoffquelle genutzt werden kann”, erklärt Thomas Gassler. Mit anderen Worten, Pichia pastoris wächst jetzt mit CO2 als seiner einzigen Kohlenstoffquelle und nutzt Methanol lediglich als Energielieferant. Nicht nur das, mit Hilfe einer Technik namens „Adaptive Laboratory Evolution” konnte das autotrophe Wachstum der synthetischen Zellen sogar noch gesteigert werden. Dank dieser neuartigen Hefetechnologie kann CO2 nun in hochwertige Produkte wie zelluläre Biomasse, Chemikalien, Proteine und Enzyme umgewandelt werden. Es wird „gebunden”, statt – wie das bei einem heterotrophen Stoffwechselweg der Fall wäre – in die Erdatmosphäre ausgestoßen zu werden und diese weiter zu belasten.

„Der potenzielle Nutzen ist sowohl aus ökologischer als auch aus ökonomischer Sicht – durch Wegfall von teuer herzustellenden Ausgangsstoffen – enorm”, sagt Thomas Gassler. „Zum gegenwärtigen Zeitpunkt zeichnen sich zwei konkrete Anwendungen der autotrophen Hefeart ab: zum einen als CO2-fixierender und eiweißreicher Zusatz in der Futtermittelherstellung (einschließlich Fischfutter) als Alternative zu Fischmehl und zum ressourcenintensiven Sojamehl – man denke an die weltweit praktizierte Rodung von Waldgebieten für den Sojaanbau. Und zum anderen als Ausgangsstoff für die Erzeugung von biologisch abbaubaren Polymeren, die als Plastikersatz dienen können. Wir rechnen damit, dass sich diese Anwendungen in den kommenden fünf bis zehn Jahren konkretisieren werden.”
 


Green Energy Lab visualisiert die Energiezukunft

Der Umstieg auf nachhaltige und zukunftssichere Energielösungen ist zentraler Faktor im Kampf gegen den Klimawandel. Das Innovationslabor Green Energy…

Weiterlesen

Grüne Synergien in Mobilität, Industrie und Energieversorgung

Die nachhaltige Transformation - Das primäre Ziel der Wasserstoffinitiative Vorzeigeregion Austria Power and Gas, kurz WIVA P&G, ist, die…

Weiterlesen

8. Wiener Innovationskonferenz

„In Zeiten des Umbruchs bestehen - Transformation mit Innovation“ - Die 8. Wiener Innovationskonferenz widmet sich den aktuellen Umbrüchen am…

Weiterlesen

FlexModul – Saisonale Speicherung von Solarenergie

© Barbara Krobath

Die Volatilität (Schwankungen) von erneuerbaren Energien bringt einen hohen Bedarf an Energiespeichern mit sich. Nur so kann auch zu Zeiten geringer…

Weiterlesen

Zum dekarbonisierten, leistbaren Wohnraum

© Canva/Illionaire

Die Weiterentwicklung von privaten Zinshäusern zu vertraglich abgesicherten Gemeinschaftsprojekten samt baubehördlicher Genehmigung für die umfassende…

Weiterlesen

Patricia Neumann: Neue Vorstandsvorsitzende der Siemens AG Österreich

© Siemens

Mag. Patricia Neumann (51) ist seit Anfang Mai 2023 Vorstandsvorsitzende der Siemens AG Österreich. Die neue CEO ist für die Dauer von fünf Jahren…

Weiterlesen

Schon gehört?

Der Austria Innovativ Podcast in Kooperation mit Julia Schütze.

Interviews mit Entscheider*innen aus Wirtschaft, Wissenschaft und Forschung.

Hören Sie hier Folge 2 (Teil 1): Interview mit Siemens-Manager Gerd Pollhammer

Wenn Sie externe Inhalte von w.soundcloud.com aktivieren, werden Daten automatisiert an diesen Anbieter übertragen.

Termine

AHF-Schladming 2024

Datum: 23.05.2024 bis 25.05.2024
Ort: Congress Schladming

Lange Nacht der Forschung 2024 in Tirol

Datum: 24.05.2024
Ort: Tirol

Zukunftstag: Innovations- und Wirtschaftsregion Süd

Datum: 09.10.2024
Ort: Messe Congress, Graz

Mehr Termine

Abonnement und Mediadaten

Sie wollen die führende österreichische Fachzeitschrift kennen lernen?
Sie wollen sich über Erscheinungstermine, Schwerpunkte und Werbemöglichkeiten informieren?

Hier sind Sie richtig.  

Abonnement

Mediadaten